Some Recurrences for Generalzed Hypergeometric Functions

Awadhesh Kumar Pandey*, Ramakant Bhardwaj**, Kamal Wadwa**** and N.S. Thakur*
Department of Mathematics,
*Patel Institute of Technology, Bhopal, (M.P.)
**Truba Institute of Technology, Bhopal, (M.P.)
***Govt. Narmda P.G. College, Hoshangabad, (M.P.)

(Received 05 November, 2012, Accepted 05 January, 2013)
ABSTRACT: In the present paper our result is the q-extension of the known result due to Galu'e and Kalla [4]. Which are define for Generalized hypergeometric function ${ }_{S+1} F_{S}(\cdot)$ in termsof an iterated q-integrals involving Gauss's hypergeometric function ${ }_{2} F_{1}(\cdot)$. By using the relations between q-contiguous hypergeometric function ${ }_{2} \mathrm{~F}_{1}(\cdot)$, some new \& known recurrence relations for the generalized hypergeometric functions of one variable are deduced in the line of Purohit [6] as a special case.

I. INTRODUCTION

The generalized basic hypergeometric series Gasper and Rahman [5] is given by
${ }_{\mathrm{r}} \emptyset_{\mathrm{s}}\left(a_{1}, \ldots, a_{r} ; \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{s}} ; x\right)={ }_{\mathrm{r}} \emptyset_{\mathrm{s}}\left[\begin{array}{l}a_{1}, a_{2}, \ldots \ldots a_{p} ; \\ b_{1}, b_{2}, \ldots \\ b_{s} ;\end{array}, x\right]$

where for real or complex a
$(a ; q)_{n}= \begin{cases}1 & \text { if } \mathrm{n}=0 \\ (1-a)(1-a q) \ldots \ldots\left(1-a q^{n-1}\right) ; & \text { if } n \in N\end{cases}$
is the q -shifted factorial, r and s are positive integers, and variable x, the numerator parameters a_{1}, \ldots, a_{r}, and the denominator parameters b_{1}, \ldots, b_{s}, being any complex quantities provided that
$b_{j}=q^{-m}, \quad m=0,1, \cdots ; j=1,2, \cdots, s$.
If $|\mathrm{q}|<1$, the series (1.1) converges absolutely for all x if $\mathrm{r} \leq \mathrm{s}$ and for $|x|<1$ if $\mathrm{r}=\mathrm{s}+1$. This series also converges absolutely if $|q|>1$ and $|x|<\left|b_{1}, \ldots \ldots, b_{s}\right| /\left|a_{1}, \ldots, \ldots, a_{r}\right|$.

Further, in terms of the q-gamma function, (1.2) can be expressed as
$(a ; \mathrm{q})_{\mathrm{n}}=\frac{\Gamma_{q}(a+n)(1-q)^{n}}{\Gamma_{q}(a)}, \quad \mathrm{n}>0$,
where the q-gamma function (Gasper and Rahman [5]) is given by
$\Gamma_{q}(a)=\frac{(q ; q)_{\infty}}{\left(q^{a} ; q\right)_{\infty}(1-q)^{n-1}}=\frac{(q ; q)_{n-1}}{(1-q)^{n-2}}$
where $a \neq 0,-1,-2$,

Gasper and Rahman [5], has given the following relations between q-contigous basic hypergeometric functions
and

$$
{ }_{2} \emptyset_{1}\left[\begin{array}{cc}
q^{\alpha+1}, & q^{\beta-1}, \tag{1.8}\\
& q^{\gamma} ; \\
;
\end{array}, x\right]-{ }_{2} \emptyset_{1}\left[\begin{array}{cc}
q^{\alpha} & q^{\beta,} \\
& q^{\gamma} ; \\
;
\end{array}, x\right]=q^{\alpha} x \frac{\left(1-q^{\beta-\alpha+1}\right)}{\left(1-q^{\gamma}\right)}{ }_{2} \emptyset_{1}\left[\begin{array}{c}
q^{\alpha+1}, \\
q^{\gamma+1}, \\
q^{\beta} \\
\end{array}, x\right]
$$

The following results are due to Galu'e and Kalla [4],

$$
\begin{align*}
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(\mathrm{~s}-1) \text { times } \sum_{i=0}^{s=2} t_{i+1}^{a_{s+1-\mathrm{i}^{-1}}}\left(1-t_{i+1}\right)^{b_{\mathrm{s}-\mathrm{i}^{-}} a_{8+1-\mathrm{i}^{-1}}} \tag{1.9}
\end{align*}
$$

where $\operatorname{Re}\left(\mathrm{b}_{\mathrm{s}-\mathrm{i}}\right)>0$, for all $\mathrm{i}=0,1, \cdots, \mathrm{~s}-2,|x|<1$ and $\left|t_{s-1} \ldots \ldots t_{2} t_{1} x\right|<1$.
In view of limit formulae $\lim _{q \rightarrow 1^{-}} \Gamma_{q}(a)=\Gamma(\alpha)$ and $\lim _{q \rightarrow 1^{-}} \frac{\left(q^{a} ; q\right)_{n}}{(1-q)^{n}}=(\alpha)_{n}$
where $(\alpha)_{n}=a(\alpha+1)$ \qquad $(a+n-1)$

Due to Gasper and Rahman [5], the q-analogue of Euler's integral representation
${ }_{2} \emptyset_{1}\left[\begin{array}{c}a \\ q^{\beta} ; \\ \gamma_{i} \\ \gamma_{p} x\end{array}\right]=\frac{r_{q}(c)}{r_{q}(b) r_{q}(c-b)} \times \int_{0}^{1} t^{b-1}(t q ; q)_{c-b-1} \times{ }_{1} \emptyset_{0}\left[q^{a ;} ; q, t x\right] d_{q} t \ldots$
The generalization of q-analogue of Euler's integral representation due to Gasper and Rahman [5] is

$$
\begin{align*}
& \chi_{\mathrm{r}-1} \emptyset_{\mathrm{s}-1}\left[\begin{array}{c}
a_{1}, a_{2}, a_{\mathrm{g}}, \ldots a_{\gamma-1} ; \\
b_{1}, \\
b_{2}, \\
b_{2}, \ldots \\
b_{S-1}
\end{array}, t x\right] d_{q} t . \tag{1.12}
\end{align*}
$$

Purohit [6], has given the iterated q-integral representaion

$$
\begin{aligned}
& { }_{s+1} \emptyset_{s}\left[\begin{array}{c}
a^{a} q^{\beta}, a_{s,}, a_{4}, \ldots, a_{3}, a_{s+1} ; \\
q^{Y}, b_{z}, b_{\Omega}, \ldots, b_{s},
\end{array}\right]=\sum_{i=0}^{z-2} \Gamma_{q}\left[\begin{array}{c}
b_{s-1} \\
a_{s+1-\mathrm{i}}, b_{\varepsilon-1}-a_{s+1-\mathrm{i}}
\end{array}\right] \\
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \operatorname{times} \sum_{i=0}^{z-2} t_{i+1}^{a_{s+1-i}-1}\left(t_{i+1} q ; q\right)_{b_{3-1}-a_{3+1-1}}
\end{aligned}
$$

$\times{ }_{2} \emptyset_{1}\left[\begin{array}{c}q^{\alpha}, \\ q_{q}^{\beta} q_{i} \\ q_{i}, t_{s-1} \ldots \ldots \\ \left.t_{2} t_{1} x\right]\end{array} d_{q} t_{s-1} \ldots \ldots . d_{q} t_{2} d_{q} t_{1}\right.$.
where $\operatorname{Re}\left(b_{s-i}\right)>0$, for all $\mathrm{i}=0,1, \cdots, \mathrm{~s}-2 ;|\mathrm{q}|<1,|x|<1$ and $\left|t_{s-1} \ldots \ldots t_{2} t_{1} x\right|<1$.
Bailey [1], Exton [3], Galu'e and Kalla [4], Gasper and Rahman [5] \& Slater [8], has given a wide range of applications of the theory of generalized hypergeometric functions of one and more variables in various fields of Mathematics, Physics and Engineering Sciences, namely-Number theory, Partition theory, Combinatorial analysis, Lie theory, Fractional calculus, Integral transforms, Quantum theory etc.
In the present article, Generalized hypergeometric function ${ }_{\mathrm{S}+1} F_{\mathrm{S}}(\cdot)$ is expressed in terms of an iterated q -integrals involving the q-Gauss hypergeometric function ${ }_{2} \mathrm{~F}_{1}(\cdot)$. By using q-contiguous relations for ${ }_{2} \mathrm{~F}_{1}(\cdot)$, some recurrence relations for the generalized hypergeometric functions of one variable are obtained in the line of Purohit [6] as a special case. Here the mentioned technique is a q-version of the technique used by Galu'e and Kalla [4].

II. MAIN RESULT

If $\operatorname{Re}\left(\mathrm{b}_{\mathrm{s}-\mathrm{i}}\right)>0$, for all $\mathrm{i}=0,1, \cdots, \mathrm{~s}-2$ and $|\mathrm{q}|<1$, then the iterated q -integral representaion of ${ }_{\mathrm{s}+1} \mathrm{~F}_{\mathrm{S}}(\cdot)$ is given by

$$
\begin{align*}
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \text { times } \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-1}-1}\left(t_{i+1} q ; q\right)_{b_{s-i}-a_{s+1-1}-1} \\
& \times{ }_{2} F_{1}\left[\begin{array}{c}
q^{a+\tau_{2}}, q_{q}^{b+r_{i}} \\
q^{c+r_{j}}
\end{array}, t_{z-1} \ldots \ldots t_{2} t_{1} x\right] d_{q} t_{z-1 \ldots \ldots \ldots} d_{q} t_{2} d_{q} t_{1} . \tag{2.0}
\end{align*}
$$

where $|x|<1, \mathrm{r}>0$ and $\left|t_{s-1} \ldots \ldots t_{2} t_{1} x\right|<1$.
Proof: Using equation (1.12),the L.H.S. of equation(2.0) can also be written as

$$
\begin{align*}
& \times{ }_{s} F_{s-1}\left[\begin{array}{l}
a^{a+r}, q^{b+\tau}, a_{s}, \ldots, a_{s} \\
q^{c+r}, b_{2}, b_{3}, \cdots \\
b_{s-1}
\end{array}, q, t_{1} x\right] d_{q} t_{1} . \tag{2.1}
\end{align*}
$$

repeating the process in the right-hand side of (2.1), we have

$$
\begin{aligned}
& \times \int_{0}^{1} \int_{0}^{1} t_{2}^{a_{s}-1}\left(t_{2} q ; q\right)_{b_{s-1}-a_{s}-1} t_{1}^{a_{3+1}-1}\left(t_{1} q ; q\right)_{b_{s}-a_{s+1}-1}
\end{aligned}
$$

again repeating the process in the right-hand side of (2.2), we have

$$
\begin{aligned}
& \times \Gamma_{q}\left[\begin{array}{c}
b_{s-1}, b_{s-2}-a_{s-1}
\end{array}\right] \times \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} t_{3}^{a_{s-1}-1}\left(t_{3} q ; q\right)_{b_{s-2}-a_{s-1}-1} t_{2} a_{s}-1 \\
& \times\left(t_{2} q ; q\right)_{b_{s-1}-a_{s}-1} t_{1}^{a_{s+1}^{-1}}\left(t_{1} q ; q\right)_{b_{s}-a_{s+1}-1}
\end{aligned}
$$

On successive operations ($s-4$) times in the right-hand side of (2.3), we get

$$
\begin{align*}
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \operatorname{times} \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-i}-1}\left(t_{i+1} q ; q\right)_{b_{s-i}-a_{s+1-i}-1} \\
& \times{ }_{2} F_{1}\left[\begin{array}{r}
q^{a+\%}, q^{b+r_{3}} \\
q^{a+r_{2}} \\
\left.q, t_{s-1} \ldots \ldots t_{2} t_{1} x\right]
\end{array}\right] d_{q} t_{z-1} \ldots \ldots d_{q} t_{2} d_{q} t_{1} . \tag{2.4}
\end{align*}
$$

which is the required result.

III. RECURRENCE RELATIONS

Using equation (1.5), we get

$$
\begin{align*}
& { }_{2} F_{1}\left[\begin{array}{c}
q^{a+r}, q^{b+r_{3}} \\
q^{a+r_{1}} \\
q_{r} \\
t_{s-1}
\end{array} \ldots \ldots t_{2} t_{1} x\right]={ }_{2} F_{1}\left[\begin{array}{c}
q^{a+r} q^{a+r_{3}} \\
q^{a+r-1} ;
\end{array} q, t_{s-1} \ldots \ldots t_{2} t_{1} x\right] \\
& -q^{c+r} t_{s-1} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{a+r}\right)\left(1-q^{b+r}\right)}{\left(q-q^{c+r}\right)\left(1-q^{r+\gamma}\right)}{ }_{2} F_{1}\left[\begin{array}{c}
\left.q^{a+r+1} q^{b+r+1} q^{c+r+1} ; q, t_{s-1} \ldots \ldots t_{2} t_{1} x\right]
\end{array}\right. \tag{3.1}
\end{align*}
$$

On substituting value from relation (3.1) in the right-hand side of the equation (2.0), we have

$$
\begin{aligned}
& \times \int_{0}^{1} \int_{0}^{1} \cdots \cdots(s-1) \text { times } \sum_{i=0}^{z-2} t_{i+1}^{a_{s+1-i}-1}\left(t_{i+1} q ; q\right)_{b_{g-i}-a_{s+1-i}-1} \\
& \times_{2} F_{1}\left[\begin{array}{r}
q^{a+\tau} \\
q^{a+r-1} ; \\
q^{b+r_{3}}
\end{array}, t_{z-1} \ldots \ldots t_{2} t_{1} x\right] d_{q} t_{s-1} \ldots \ldots \ldots d_{q} t_{2} d_{q} t_{1} \\
& -q^{c+r} t_{s-1} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{a+r}\right)\left(1-q^{b+r}\right)}{\left(q-q^{\varepsilon+r}\right)\left(1-q^{c+r}\right)} \sum_{i=0}^{s-2} \Gamma_{q}\left[\begin{array}{c}
\mathrm{b}_{\mathrm{s}-\mathrm{i}} \\
\alpha_{\varepsilon+1-\mathrm{i}}, \mathrm{~b}_{\mathrm{s}-\mathrm{i}}-\alpha_{\varepsilon+1-\mathrm{i}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(\mathrm{~s}-1) \operatorname{times} \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-1}-1}\left(t_{i+1} q ; q\right)_{b_{s-1}-a_{s+1-1}-1} \\
& \quad \times{ }_{2} F_{1}\left[\begin{array}{r}
q^{a+\gamma+1}, q^{b+\gamma+1}, \\
\left.q^{c+\gamma+1}, q, t_{s-1} \ldots \ldots t_{2} t_{1} x\right]
\end{array}\right] d_{q} t_{s-1} \ldots \ldots \ldots d_{q} t_{2} d_{q} t_{1} \tag{3.2}
\end{align*}
$$

Again, on making use of the result (2.0), the above result (3.2) leads to the following recurrence relation:

$$
\begin{align*}
& \quad-q^{c+r} x \frac{\left(1-q^{a+r}\right)\left(1-q^{b+r}\right)}{\left(q-q^{\varepsilon+r}\right)\left(1-q^{a+r}\right)} \sum_{i=0}^{s-2}\left[\frac{\left(1-q^{a_{s}+1-1}\right)}{\left(1-q^{\left.b_{s}-1\right)}\right.}\right] \\
& \times_{s+1} F_{s}\left[\begin{array}{r}
q^{a+r+1}, q^{b+r+1}, a_{3} q, a_{4} q, \ldots,, a_{s} q ; a_{s+1} q ; \\
q^{c+r+1}, b_{2} q, b_{3 q} q, \ldots, b_{s} q ;
\end{array}\right] \tag{3.3}
\end{align*}
$$

where $\operatorname{Re}\left(\mathrm{b}_{\mathrm{z}-\mathrm{i}}\right)>0$, for all $\mathrm{i}=0,1, \cdots, \mathrm{~s}-2$ and $|\mathrm{x}|<1$.
Using equation (1.6), we get

$$
\begin{align*}
& -q^{a+r} t_{s-1} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{b+r}\right)}{\left(1-q^{a+\gamma}\right)} \\
& \times_{2} F_{1}\left[\begin{array}{lll}
q^{a+\%+1} & q^{b+\%+1}, \\
& \left.q^{a+\gamma+1}, q, t_{s-1} \ldots t_{2} t_{1} x\right]
\end{array}\right. \tag{3.4}
\end{align*}
$$

On substituting value from equation (3.4) in the right-hand side of the equation (2.0), we have

$$
\begin{align*}
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \text { times } \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-i}-1}\left(t_{i+1} q ; q\right)_{b_{s-i}-a_{s+1-1}-1} \\
& \times{ }_{2} F_{1}\left[\begin{array}{ll}
q^{a+\tau+1}, & q^{b+\tau} ; \\
& q^{c+r_{1}} ; \\
& q, t_{s-1} \ldots \ldots t_{2} t_{1} x
\end{array}\right] d_{q} t_{s-1} \ldots \ldots . . d_{q} t_{2} d_{q} t_{1} \\
& -q^{a+r} t_{s-1} \ldots \ldots t_{2} t_{1} \times \frac{\left(1-q^{b+r}\right)}{\left(1-q^{c+7}\right)} \sum_{i=0}^{s-2} \Gamma_{q}\left[\begin{array}{c}
\mathrm{b}_{\mathrm{q}-\mathrm{i}} \\
a_{s+1-\mathrm{i}}, \mathrm{~b}_{z-\mathrm{i}}-a_{s+1-\mathrm{i}}
\end{array}\right] \\
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \operatorname{times} \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-1}-1}\left(t_{i+1} q ; q\right)_{b_{s-i}-a_{s+1-1}-1} \\
& \times{ }_{2} F_{1}\left[\begin{array}{ll}
q^{a+\gamma+1}, & q^{b+\gamma+1} ; \\
& q^{\alpha+\gamma+1} ;
\end{array}, t_{s-1} \ldots \ldots t_{2} t_{1} x\right] d_{q} t_{s-1} \ldots \ldots . . d_{q} t_{2} d_{q} t_{1} \tag{3.5}
\end{align*}
$$

Again, on making use of the result (2.0), the above result (3.5) leads to the following recurrence relation:

$$
\begin{align*}
& { }_{\mathrm{S}+1} \boldsymbol{F}_{\mathrm{s}}\left[\begin{array}{r}
\boldsymbol{q}^{a+r}, q^{b+r}, a_{3,} a_{4}, \ldots a_{s}, a_{s+1} ; \\
q^{a+r}, b_{2}, b_{3}, b_{g} ;
\end{array}, \boldsymbol{x}\right]={ }_{\mathrm{s}+1} \boldsymbol{F}_{\mathrm{s}}\left[\begin{array}{r}
q^{a+r+1}, q^{a+r}, a_{3 ;}, a_{4} \ldots a_{s} a_{s+1} ; \\
q^{a+r}, b_{2}, b_{3}, b_{g} ;
\end{array}\right] \\
& -q^{a+r} x \frac{\left(1-q^{b+r_{7}}\right)}{\left(1-q^{\varepsilon+r}\right)} \sum_{i=0}^{s-2}\left[\frac{\left(1-q^{a_{5+1-1}}\right)}{\left(1-q^{b_{5-1}}\right)}\right] \\
& \times_{\mathrm{s}+1} \boldsymbol{F}_{\mathrm{s}}\left[\begin{array}{r}
q^{a+r+1}, q^{b+r+1}, a_{3} q, a_{4} q, \ldots \ldots, a_{s} q, a_{s+1} q \\
q^{\varepsilon+r+1}, b_{2} q, b_{3} q ; \ldots, b_{s} q
\end{array}, \boldsymbol{q}\right] \tag{3.6}
\end{align*}
$$

where $\operatorname{Re}\left(\mathrm{b}_{\mathrm{s}-\mathrm{i}}\right)>0$, for all $\mathrm{i}=0,1, \cdots, \mathrm{~s}-2$ and $|\mathrm{x}|<1$.
Using equation (1.7), we get

$$
\begin{align*}
& { }_{2} F_{1}\left[\begin{array}{l}
q^{a+\gamma+1},
\end{array} q^{b+\gamma+1} ; q^{v+\gamma+1} ; t_{s-1} \ldots \ldots t_{2} t_{1} x\right]={ }_{2} F_{1}\left[\begin{array}{r}
q^{a+\gamma+1}, q^{b+\tau} ; \\
q^{b+\gamma+1} ;
\end{array}, t_{s-1} \ldots \ldots t_{2} t_{1} x\right] \\
& -q^{a+r} t_{s-1} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{c-a}\right)\left(1-q^{b+r}\right)}{\left(1-q^{c+r+1}\right)\left(1-q^{c+r}\right)} \\
& X_{2} F_{1}\left[\begin{array}{llll}
a+\gamma+1
\end{array}, q^{b+\gamma+1} ; q, t_{s-1} \ldots \ldots t_{2} t_{1} x\right] \tag{3.7}
\end{align*}
$$

On substituting value from equation (3.7) in the right-hand side of the equation (2.0), we have

$$
\begin{align*}
& \times \int_{0}^{1} \int_{0}^{1} \cdots \cdots(s-1) \operatorname{times} \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-1}-1}\left(t_{i+1} q ; q\right)_{b_{s-1}-a_{s+1-1}-1} \\
& X_{2} F_{1}\left[\begin{array}{r}
q^{a+r+1}, q^{b+r_{3}} \\
q^{a+r+1} ; \\
,
\end{array}, t_{s-1} \ldots \ldots t_{2} t_{1} x\right] d_{q} t_{s-1 \ldots \ldots \ldots} d_{q} t_{2} d_{q} t_{1} \\
& -q^{a+r^{t_{z-1}}} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{\left.c-a_{)}\right)\left(1-q^{b+r}\right)}\right.}{\left(1-q^{c+\gamma+1}\right)\left(1-q^{\varepsilon+r}\right)} \sum_{i=0}^{s-2} \Gamma_{q}\left[\begin{array}{c}
b_{s-1} \\
a_{z+1-1}, b_{z-1}-a_{z+1-1}
\end{array}\right] \\
& \times{ }_{2} F_{1}\left[\begin{array}{lll}
q^{a+\gamma+1}, & q^{b+\gamma+1}, \\
q^{c+\gamma+2}, & \left.q, t_{s-1} \ldots \ldots t_{2} t_{1} x\right]
\end{array}\right] d_{q} t_{s-1 \ldots \ldots \ldots} d_{q} t_{2} d_{q} t_{1} \tag{3.8}
\end{align*}
$$

Again, on making use of the result (2.0), the above result (3.8) leads to the following recurrence relation:

$$
\begin{align*}
& -q^{a+r} x \frac{\left(1-q^{c-a_{2}}\right)\left(1-q^{b+r}\right)}{\left(1-q^{c+r+1}\right)\left(1-q^{c+r}\right)} \sum_{i=0}^{s-2}\left[\frac{\left(1-q^{a_{5+1}-i}\right)}{\left(1-q^{\left.b_{5}-1\right)}\right.}\right] \\
& \times_{s+1} F_{s}\left[\begin{array}{r}
q^{a+r+1}, q^{h+r+1}, a_{3 q}, a_{4} q, \ldots, \ldots, a_{s} q, a_{s+1} q ; \\
q^{G+r+2}, b_{2} q, b_{3} q, \ldots, b_{s} q ;
\end{array}\right] \tag{3.9}
\end{align*}
$$

Where, $\operatorname{Re}\left(\mathrm{b}_{\mathrm{s}-\mathrm{i}}\right)>0$, for all $\mathrm{i}=0,1, \cdots, \mathrm{~s}-2$ and $|\mathrm{x}|<1$.
Using equation (1.8), we get

$$
\begin{align*}
& -q^{a+r} t_{s-1} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{b-a+1}\right)}{\left(1-q^{c+r}\right)} \\
& \times{ }_{2} F_{1}\left[\begin{array}{|c}
q^{a+\gamma+1}, q^{b+r_{i}} \\
q^{c+r+1} ;
\end{array} q, t_{z-1} \ldots \ldots t_{2} t_{1} x\right] \tag{3.10}
\end{align*}
$$

On substituting value from equation (3.10) in the right-hand side of the equation (2.0), we have

$$
\begin{aligned}
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \operatorname{times} \sum_{i=0}^{z-2} t_{i+1}^{a_{s+1-i}-1}\left(t_{i+1} q ; q\right)_{b_{s-i}-a_{s+1-i}-1}
\end{aligned}
$$

$$
\begin{align*}
& -q^{a+r} t_{s-1} \ldots \ldots t_{2} t_{1} x \frac{\left(1-q^{b-a+1}\right)}{\left(1-q^{c+\gamma}\right)} \quad \sum_{i=0}^{s-2} F_{q}\left[\begin{array}{c}
b_{\varepsilon-i} \\
a_{\varepsilon+1-1}, b_{s-i}-a_{z+1-i}
\end{array}\right] \\
& \times \int_{0}^{1} \int_{0}^{1} \ldots \ldots(s-1) \operatorname{times} \sum_{i=0}^{s-2} t_{i+1}^{a_{s+1-i}-1}\left(t_{i+1} q ; q\right)_{b_{s-i}-a_{s+1-i}-1} \\
& \times{ }_{2} F_{1}\left[\begin{array}{r}
q^{a+\gamma+1}, q^{b+T_{3}} ; \\
q^{d+\gamma+1} ; \\
\left.q, t_{z-1} \ldots \ldots t_{2} t_{1} x\right]
\end{array} d_{q} t_{z-1 \ldots \ldots \ldots} d_{q} t_{2} d_{q} t_{1} .\right. \tag{3.11}
\end{align*}
$$

Again, on making use of the result (2.0), the above result (3.11) leads to the following recurrence relation:

$$
\begin{align*}
& -q^{a+r} x \frac{\left(1-q^{b-a+1}\right)}{\left(1-q^{c+r}\right)} \sum_{i=0}^{s-2}\left[\frac{\left(1-q^{a_{5+1}+1}\right)}{\left(1-q^{b_{5}-1}\right)}\right] \\
& \times{ }_{\mathrm{s}+1} \boldsymbol{F}_{\mathrm{s}}\left[\begin{array}{r}
\boldsymbol{q}^{a+r+1}, \boldsymbol{q}^{b+r}, a_{3} q, a_{4} q, \ldots, a_{s} q, a_{s+1} q ; \\
\\
\boldsymbol{q}^{c+r+1}, b_{2} q, b_{3} q, \ldots \ldots \\
b_{s} q ;
\end{array}, \boldsymbol{x}\right] \tag{3.12}
\end{align*}
$$

where $\operatorname{Re}\left(\mathrm{b}_{z-\mathrm{i}}\right)>0$, for all $i=0,1, \cdots, \mathrm{~s}-2$ and $|\mathrm{x}|<1$.
We conclude with the remark that the results deduced in the present paper appears to be a new contribution to the theory of generalized hypergeometric series. Secondly, one can easily obtain number of recurrence relations for the generalized hypergeometric functions by the applications of iterated q-integral representation for ${ }_{s+1} \mathrm{~F}_{\mathrm{S}}(\cdot)$.
Remark: If we put $\mathrm{r}=0$ in all the results, we get the results of [6].

ACKNWLEDGEMENNT

Corresponding Auther (A.P.) is thankful to all reviewers and Authers whose references are taken to prepare this article.

REFERENCES

[1]. Bailey W. N., "Generalized Hypergeometric Series", Cambridge University Press, Cambridge, Second edition (1964).
[2]. Erd'elyi A., "Higher transcendental functions", McGraw Hill, New York, vol. 1 (1953).
[3]. Exton H., "q-Hypergeometric Functions and Applications", Ellis Horwood Limited, Halsted Press, John Wiley and Sons, Chichester, (1983).
[4]. Galu'e L. and Kalla S.L., "Some recurrence relations for the generalized hypergeometric functions of the Gauss type", Fract. Calc. and Appl. Anal. 1(1), (1998), pp.49-62.
[5]. Gasper G. and Rahman M., "Basic Hypergeometric Series", Cambridge University Press, Cambridge, (1990).
[6]. Purohit, S.D.,"Some recurrence relations for the generalized basic hypergeometric functions", Bulletin of Mathematical analysis and Applications, Vol.1, Issue 1,(2009), pp. 22-29.
[7]. Rainville E.D., "Spescial function".
[8]. Slater L.J., "Generalized Hypergeometric Functions", Cambridge University Press, Cambridge, London and New York, (1966).

